Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome

Dionyssios E. Mouzakis a,⁎, George Rachiotis b, Stefanos Zaoutsos a, Andreas Eleftheriou c, Konstantinos N. Malizos d

a Department of Mechanical Engineering, Technological Educational Institute of Thessaly, 41110 Larissa, Greece
b Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
c Department of Public Health, Technological Educational Institute of Athens, Athens, Greece
d Department of Orthopaedics and Musculoskeletal Trauma Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece

A R T I C L E I N F O

Article history:
Accepted 4 July 2014

Keywords:
Computer work
Finite element analysis
Carpal tunnel syndrome
Biomechanics
Median nerve

A B S T R A C T

Carpal tunnel syndrome (CTS) is a clinical disorder resulting from the compression of the median nerve. The available evidence regarding the association between computer use and CTS is controversial. There is some evidence that computer mouse or keyboard work, or both are associated with the development of CTS. Despite the availability of pressure measurements in the carpal tunnel during computer work (exposure to keyboard or mouse) there are no available data to support a direct effect of the increased intracarpal canal pressure on the median nerve.

This study presents an attempt to simulate the direct effects of computer work on the whole carpal area section using finite element analysis. A finite element mesh was produced from computerized tomography scans of the carpal area, involving all tissues present in the carpal tunnel. Two loading scenarios were applied on these models based on biomechanical data measured during computer work. It was found that mouse work can produce large deformation fields on the median nerve region. Also, the high stressing effect of the carpal ligament was verified. Keyboard work produced considerable and heterogeneous elongations along the longitudinal axis of the median nerve. Our study provides evidence that increased intracarpal canal pressures caused by awkward wrist postures imposed during computer work were associated directly with deformation of the median nerve. Despite the limitations of the present study the findings could be considered as a contribution to the understanding of the development of CTS due to exposure to computer work.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Carpal tunnel syndrome (CTS), the most common of the entrapment neuropathies, is a clinical disorder resulting from the compression of the median nerve at the wrist (Dawson et al., 1990). The evidence that computer use can cause CTS is mixed. There exists some evidence that using a computer mouse can be associated with the development of CTS due to exposure to computer work. It was found that mouse work can produce large deformation fields in the carpal tunnel and median nerve stress and strain fields, or

* Corresponding author. Tel.: +30 2410 684 556.
E-mail address: mouzakis@teilar.gr (D.E. Mouzakis).

http://dx.doi.org/10.1016/j.jbiomech.2014.07.004
0021-9290/© 2014 Elsevier Ltd. All rights reserved.

Please cite this article as: Mouzakis, D.E., et al., Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome. Journal of Biomechanics (2014), http://dx.doi.org/10.1016/j.jbiomech.2014.07.004

To our knowledge, there are limited data on the simulation of the carpal tunnel and median nerve stress and strain fields, or large elongations experienced by them. One of these works refers to a full simulation of the carpal area based on CT scan images, in
which the authors studied the effects of elongation of the transverse carpal ligament (Guo et al., 2007). In a similar investigation by finite element analysis, the effect of damage to carpal ligaments and the movement of carpal bones were studied (Javanmardian and Haghpahahi, 2010). In the most relevant study, anatomical image-based human carpal tunnel finite element (FE) models were constructed to enable the study of median nerve mechanical insult. It was found that large deformation, and (i.e.) multi-body contact between the nerve, the nine digital flexor tendons and the carpal tunnel boundary characterized the interactions within the carpal tunnel (Ko and Brown, 2007; Lin, 2009). The authors concluded that this was probably the main mechanism associated with the development of carpal tunnel syndrome. However, the methodology of these works employed rheological models with fluid mechanics (Ko and Brown, 2007; Lin, 2009). Despite, the availability of pressure measurements in the carpal canal during computer work (exposure to keyboard or mouse) there are no data to support a direct effect of the increased intracarpal canal pressure on the median nerve (Thomsen et al., 2008; Keir et al., 1999). Interestingly, computer keyboard typing effects on the time-dependent force response of the human fingertip have also been evaluated using finite element modeling (Wu et al., 2003).

This study attempts to contribute to the understanding of the carpal syndrome by simulating the impact of increased intracarpal canal pressures caused by computer work on carpal tunnel and specifically on the median nerve. The first step of this study was to synthesize a full 2D and pseudo-3D anatomical finite element model of the whole wrist section, with all the load-bearing tissues present, including the wrist bones. Secondly, this study aimed at applying real work-load scenarios of Computer use (keyboard and mouse) on the finite element model, in order to reach conclusions regarding the actual loading mechanism of the carpal tunnel and the median nerve during computer work.

2. Methodology – finite element modeling procedures

2.1. Two and three dimensional carpal models

A CT scan (frontal axial view) obtained from a public domain magnetic resonance imaging (MRI) Dicom-type image library [http://pubimage.hcuge.ch:8080/WRX.zip, Hôpitaux Universitaires de Genève] was adopted as typical for the geometry of the carpal section. The CT monochromatic 16-bit image at a resolution of 256 × 256 pixels, (pixel spacing 0.39 × 0.39 mm²) was further digitized and each of the actual different tissue types (skin, muscles, bones, connective tissue, tendons, nerves, synovial tissue, ligaments), excluding blood vessels, corresponding to the section, was separately plotted and meshed by triangular elements. The triangular meshing of the model was performed by employing the NETGEN algorithm (*Joachim Schoeberl) which is incorporated as a separate tool into the FE-software (Lisa-Fet ver. 7.7, Sonnenhof Holdings). The mechanical properties, namely elastic modulus and Poisson’s ratio, of the triangular elements, were obtained through cross-verification from the existing literature, and are presented in Table 1. The final 2D model resulted in 9490 triangular 6-node plate (Tri6) elements with a total of 19131 nodes. Nominal element thickness was set at 2 mm. The Tri6 elements are linear strain elements since this model was designed for linear elastic analysis and mid-side elements ensure higher accuracy. The boundary conditions applied to the 2D model allowed free rotation, of the carpal bones on the X-Y plane, but no relative movement in any axis. These boundary conditions are meant to simulate the free hand movement limitations during computer work.

The tissues involved in the carpal area from skin to median nerve are viscoelastic and present a hyper-elastic behavior. Their mechanical properties are difficult to determine as such. By finite element analysis, the parameters of the viscoelastic-hyperelastic properties of transverse carpal ligament (Main et al., 2012) and also of the digital flexor tendons and the median nerve respectively (Main et al., 2011) were described in detail. These works might contribute to an even more accurate finite element model of the full carpal section sometime in the near future.

The model was linear elastic, though, neither viscoelastic nor hyper-elastic since these properties shall be the objects of future analysis in coupled models. The analysis performed was static-linear elastic. The two-dimensional (2D) model produced by the above methodology is shown in Fig. 1. The meshed FE model corresponds exactly to the actual life-size dimensions. Also, the 2D model was extruded by making use of the FE software preprocessing tools into a pseudo-three dimensional model as shown in Fig. 2. The total 3D model thickness was set at 25 mm by subdivision in 5 slices of 5 mm each. There were 50 division points (nodes) along the 360° perimeter used. The final 3D model resulted in 83660, wedge 6-node elements and 46838 nodes. The wedge 6-node (Wedge6) elements were automatically produced by the software 3D-mesh function. As in each pseudo-model, the 3D representation/image does not really show the actual anatomical details. The pseudo-3D model is produced by parallel projection of the very realistic 2D section. Nevertheless, since it is of small thickness, the authors believe that this provides a relatively good insight into the carpal region loading response, until a fully realistic 3D anatomical model is employed in further studies. In particular, very sophisticated and detailed wrist FE models have been reported in the literature in other studies (Guo et al., 2007,2009; Fischli, et al., 2009, Cisasoni et al., 2010; Bajuri, et al., 2012), which could be utilized in future work.

In order to produce the 3D-model carpal area movement all degrees of freedom were set as zero, on all nodes of the cross section visible on the left side (proximal slice), in Fig. 2.

2.2. Carpal models loading scenarios

The carpal section loading scenarios were designed so as to imitate, as much as possible, actual results obtained from researchers who have studied real-life load cases and strains experienced by the carpal tunnel area. The following two scenarios were used in the carpal models FE analysis, as presented in Table 2:

1. 2D A: 30 mm Hg internal pressure (Z-axis – pressure) on the carpal tunnel area (computer mouse) and applied on every cell node of the FE-2D model.
2. This 2D scenario utilizes a typical computer mouse. The actual pressure has been measured during use of such a mouse (Rempel et al., 1998).

2.3. C (computer keyboard): Upward bending of the carpal end by imposing a 10 mm vertical displacement constraint (Uy) on the free end of the model (distal slice), plus the application of an internal hydrostatic pressure of 17 mmHg. This actual pressure was determined during keyboard stroke motions (Rempel et al., 1998). The convergence in both the 2D and the 3D models was checked by subdivision of the elements in the initial models in two sub-elements and resolving of the models. The differences in the solutions were below statistically significant levels.

3. Results

Fig. 3 illustrates the results on the total displacements vector experienced by the carpal area. Large displacements that reach up to almost 6 mm were observed inside the carpal tunnel region. In this case, the median nerve area (indicated by arrow), is subjected to differential involuntary axial elongation of a magnitude of ca. 2.5 mm. This is the simplest effect on the median nerve following exposure to computer mouse. This repeated longitudinal elongation

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Young's modulus [MPa]</th>
<th>Poisson's ratio [dimensionless]</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>10,000</td>
<td>0.30</td>
<td>Pistoia et al., 2002</td>
</tr>
<tr>
<td>Skin</td>
<td>0.1</td>
<td>0.48</td>
<td>Liang and Boppard, 2010; Li et al., 2012</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.045</td>
<td>0.5</td>
<td>Kot et al. (2012), Ogneva and Ushakov (2012), Wells and Liang (2011)</td>
</tr>
<tr>
<td>Tendons</td>
<td>300</td>
<td>0.55</td>
<td>Maganaris and Paul, 1999, Silver and Christiansen, 1999, and Kubo et al. (2001)</td>
</tr>
<tr>
<td>Connective tissue</td>
<td>0.1</td>
<td>0.5</td>
<td>Silver and Christiansen, 1999, and Silver et al. (2003)</td>
</tr>
<tr>
<td>Synovial tissue</td>
<td>0.03</td>
<td>0.5</td>
<td>Mc Kee et al. (2011)</td>
</tr>
<tr>
<td>Ligament</td>
<td>250</td>
<td>0.5</td>
<td>Hirokawa and Tsuruno (2000)</td>
</tr>
<tr>
<td>Nerve</td>
<td>4.5</td>
<td>0.49</td>
<td>Reese et al., 2010, and Borschel et al. (2003)</td>
</tr>
</tbody>
</table>

Please cite this article as: Mouzakis, D.E., et al., Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome. Journal of Biomechanics (2014), http://dx.doi.org/10.1016/j.jbiomech.2014.07.004
would probably lead to irritation and swelling of the median nerve. An interesting finding of this study is shown in Fig. 4. The normal stress contours for the 2D A Carpal model are presented there, showing that in the mouse loading-scenario the maximum stresses are transferred by the carpal tunnel ligament. So, the surgical technique to relieve these stresses through a carpal ligament incision is probably justified here, as an effective solution to this problem.

Interesting results were delivered by the 3D carpal model when the keyboard typing scenario was applied (10 mm upward bending +17 mm Hg internal pressure). This is supposed to be a milder scenario of carpal tunnel loading in comparison to the use of a computer mouse. The results of the simulation are shown in Figs. 5 and 6.

It can be easily observed that there are strong tissue displacements and elongations in the area of the carpal tunnel. Especially in the median nerve region, keyboard typing appears to cause involuntary nerve elongation. The imposed 10 mm upward movement of the distal wrist section produced deformations in the median nerve area (Fig. 5, arrow shows median nerve) of similar magnitude, especially

![Fig. 1. The actual CT scan (A) on which the FE mesh geometry (B) was based (X-Y planar view).](image1)

![Fig. 2. The pseudo-3D model produced by extrusion of the 2D model for a thickness of 25 mm.](image2)

<table>
<thead>
<tr>
<th>Load scenario</th>
<th>Z-pressure [mmHg]</th>
<th>Z-pressure [Pa]</th>
<th>Displacement [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mouse</td>
<td>30</td>
<td>3999</td>
<td>0</td>
</tr>
<tr>
<td>2. Keyboard</td>
<td>17</td>
<td>2266</td>
<td>dy – 10</td>
</tr>
</tbody>
</table>

Table 2
Load cases imposed on the 2D and 3D FEM models.
on the distal region. We analyzed this effect in detail, by showing the z-axis displacements of the model. More specifically, as shown in Fig. 6, the median nerve is not only under compressive deformation (indicated by arrow) but its deformation is heterogeneous (differentiating contour color) as shown in the color-displacement legend on the left.

4. Discussion

A very interesting finding of this work was the high stress region which was developed during mouse-work in the carpal ligament tissue, as shown in Fig. 4. In fact, it is proven that the stress in ligament tissue during mouse work is increased up to 2.5 MPa. This effect is quite well known to orthopedic surgeons, who notably, counteract it with surgery. In fact, using finite element modeling it was reported that by this surgical technique, significant changes are inflicted to the relative displacements of the carpal bones and the contact stresses distribution in the midcarpal joints (Guo et al., 2009). Regarding exposure to keyboard, our simulation results have shown that the median nerve is subjected to involuntary deformations. These can also vary in time, if one regards the loading–unloading cycle of the hand due to the use of a keyboard. In vivo and in vitro, medical research suggested that tendon excursion creates microtears in the subsynovial connective tissue (SSCT) surrounding the tendon in the carpal tunnel. One proposed mechanism for the SSCT injury is shearing, which is believed to cause fibrosis of the SSCT (Henderson et al., 2011).

In the same study the authors indicated by finite element modeling that carpal tissue can undergo elongations up to 8mm, compared to our findings for ca. 6 mm in the carpal tissue area, (cf. Fig. 3).
Exposure to keyboard use (simulation model) is supposed to be a milder scenario of carpal tunnel loading in comparison to the use of a computer mouse; however, large deformations were found in the simulation model of exposure to keyboard, and particularly, in the direction of the median nerve longitudinal axis (axial elongations).

To the best of our knowledge, in this work, the influence of computer work on the carpal syndrome was studied using a fully solid linear-elastic model for the first time. The findings are in line with the symptoms diagnosed on the median nerve with respect to this syndrome. Moreover, the high-tension region observed on the carpal ligament was evidenced by numerical analysis, too.

Despite the limitations of the present study, i.e. the use of a static linear-elastic model rather than a transient-hyper elastic or viscoelastic one, the results provide strong evidence that computer mouse work affects the median nerve by producing differential involuntary deformations, the repetition of which, due to intense work, probably leads to median nerve fatigue.

Some future research work, with respect to extending the analysis of the finite element models presented in this work, would focus on the non-linear properties of some of the tissue types involved in the present analysis: e.g. viscoelasticity effects (skin-muscles) and hyper-elastic behavior (tendons-ligaments). Of course, this implies that the related complex tissue biomechanical properties required for such a model will be available.

5. Conclusions

The present study provides evidence that increased intracarpal canal pressures due to awkward wrist postures were directly associated with considerable deformations of the median nerve.

Please cite this article as: Mouzakis, D.E., et al., Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome. Journal of Biomechanics (2014), http://dx.doi.org/10.1016/j.jbiomech.2014.07.004
Despite the limitations of the simulation models used in the present study the results provide preliminary evidence that computer mouse work affects the median nerve by producing differential involuntary deformation or elongation, the repetition of which due to intense work could probably lead to median nerve fatigue. A high tension field on the carpal ligament appears when a pc mouse is used. In addition, keyboard work, was found to produce high and differentiating deformations in the median nerve area and along the longitudinal median nerve axis. These findings could provide further insight to the understanding of the development of CTS due to exposure to computer work.

Conflict of interest

The Authors of the Manuscript state this work was not funded by any research project or other third party or company and also, that there exists no conflict of interest whatsoever.

References

